Skip to main content

Implementation & Infrastructure

Expert Fabric's implementation strategy focuses on building a robust, scalable platform that can evolve from MVP to global-scale operation while maintaining security, performance, and reliability.

Technology Stack

Core Platform Architecture

Backend Services

# Primary technology choices
Language: TypeScript/Node.js
Framework: Express.js with Fastify optimization
API Layer: GraphQL (primary) + REST (compatibility)
Message Queue: Apache Kafka
Task Queue: Bull/BullMQ with Redis
Process Management: PM2 with clustering

Microservices Design

// Service registry pattern
interface ServiceConfig {
name: string;
version: string;
instances: number;
healthEndpoint: string;
dependencies: string[];
resources: ResourceRequirements;
}

const services: ServiceConfig[] = [
{
name: 'task-orchestrator',
version: '1.0.0',
instances: 3,
healthEndpoint: '/health',
dependencies: ['vector-db', 'expert-matcher'],
resources: { cpu: '500m', memory: '1Gi' }
},
{
name: 'expert-matcher',
version: '1.0.0',
instances: 2,
healthEndpoint: '/health',
dependencies: ['vector-db', 'expert-registry'],
resources: { cpu: '250m', memory: '512Mi' }
}
// Additional services...
];

Data Layer

Database Architecture

-- Primary PostgreSQL schema
CREATE SCHEMA IF NOT EXISTS expertfabric;

-- Core entities
CREATE TABLE expertfabric.organizations (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
name VARCHAR(255) NOT NULL,
tier VARCHAR(50) NOT NULL,
created_at TIMESTAMP DEFAULT NOW(),
settings JSONB DEFAULT '{}'
);

CREATE TABLE expertfabric.tasks (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
organization_id UUID REFERENCES expertfabric.organizations(id),
title VARCHAR(500) NOT NULL,
description TEXT,
status VARCHAR(50) NOT NULL DEFAULT 'pending',
priority INTEGER DEFAULT 3,
estimated_cost DECIMAL(10,2),
actual_cost DECIMAL(10,2),
created_at TIMESTAMP DEFAULT NOW(),
completed_at TIMESTAMP,
metadata JSONB DEFAULT '{}'
);

-- Partitioning for scale
CREATE TABLE expertfabric.task_results (
task_id UUID,
subtask_id UUID,
expert_node_id VARCHAR(255),
result_data JSONB,
quality_score FLOAT,
execution_time_ms INTEGER,
created_at TIMESTAMP DEFAULT NOW()
) PARTITION BY RANGE (created_at);

-- Create monthly partitions
CREATE TABLE expertfabric.task_results_2025_06
PARTITION OF expertfabric.task_results
FOR VALUES FROM ('2025-06-01') TO ('2025-07-01');

Vector Database Integration

// Pinecone configuration
const pineconeConfig = {
environment: process.env.PINECONE_ENVIRONMENT,
apiKey: process.env.PINECONE_API_KEY,
indexName: 'expert-fabric-knowledge',
dimension: 1536,
metric: 'cosine'
};

class VectorStore {
private pinecone: PineconeClient;

constructor() {
this.pinecone = new PineconeClient({
apiKey: pineconeConfig.apiKey,
environment: pineconeConfig.environment
});
}

async upsertTaskEmbedding(
taskId: string,
embedding: number[],
metadata: any
): Promise<void> {
const index = this.pinecone.Index(pineconeConfig.indexName);

await index.upsert({
upsertRequest: {
vectors: [{
id: taskId,
values: embedding,
metadata: {
...metadata,
type: 'task',
timestamp: Date.now()
}
}]
}
});
}

async findSimilarTasks(
embedding: number[],
topK: number = 10
): Promise<SimilarTask[]> {
const index = this.pinecone.Index(pineconeConfig.indexName);

const queryResponse = await index.query({
queryRequest: {
vector: embedding,
topK,
filter: { type: { $eq: 'task' } },
includeMetadata: true
}
});

return queryResponse.matches?.map(match => ({
taskId: match.id,
similarity: match.score || 0,
metadata: match.metadata
})) || [];
}
}

Infrastructure & Deployment

Kubernetes Configuration

# Namespace
apiVersion: v1
kind: Namespace
metadata:
name: expert-fabric
labels:
name: expert-fabric

---
# Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: task-orchestrator
namespace: expert-fabric
spec:
replicas: 3
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 1
maxUnavailable: 0
selector:
matchLabels:
app: task-orchestrator
template:
metadata:
labels:
app: task-orchestrator
spec:
containers:
- name: orchestrator
image: expertfabric/task-orchestrator:v1.0.0
ports:
- containerPort: 3000
env:
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: database-secret
key: url
- name: REDIS_URL
valueFrom:
secretKeyRef:
name: redis-secret
key: url
resources:
requests:
memory: "512Mi"
cpu: "500m"
limits:
memory: "1Gi"
cpu: "1000m"
livenessProbe:
httpGet:
path: /health
port: 3000
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /ready
port: 3000
initialDelaySeconds: 5
periodSeconds: 5

---
# Service
apiVersion: v1
kind: Service
metadata:
name: task-orchestrator-service
namespace: expert-fabric
spec:
selector:
app: task-orchestrator
ports:
- port: 80
targetPort: 3000
type: ClusterIP

---
# Horizontal Pod Autoscaler
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: task-orchestrator-hpa
namespace: expert-fabric
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: task-orchestrator
minReplicas: 3
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80

Infrastructure as Code (Terraform)

# AWS EKS Cluster
module "eks" {
source = "terraform-aws-modules/eks/aws"

cluster_name = "expert-fabric-${var.environment}"
cluster_version = "1.28"

vpc_id = module.vpc.vpc_id
subnet_ids = module.vpc.private_subnets

node_groups = {
main = {
desired_capacity = 3
max_capacity = 10
min_capacity = 3

instance_types = ["t3.large"]

k8s_labels = {
Environment = var.environment
Application = "expert-fabric"
}
}

compute_intensive = {
desired_capacity = 1
max_capacity = 5
min_capacity = 0

instance_types = ["c5.2xlarge"]

k8s_labels = {
Environment = var.environment
Application = "expert-fabric"
NodeType = "compute"
}

taints = [{
key = "compute-intensive"
value = "true"
effect = "NO_SCHEDULE"
}]
}
}
}

# RDS PostgreSQL
resource "aws_db_instance" "main" {
identifier = "expert-fabric-${var.environment}"

engine = "postgres"
engine_version = "15.4"
instance_class = "db.r5.large"

allocated_storage = 100
max_allocated_storage = 1000
storage_encrypted = true

db_name = "expertfabric"
username = var.db_username
password = var.db_password

vpc_security_group_ids = [aws_security_group.rds.id]
db_subnet_group_name = aws_db_subnet_group.main.name

backup_retention_period = 7
backup_window = "03:00-04:00"
maintenance_window = "Mon:04:00-Mon:05:00"

performance_insights_enabled = true
monitoring_interval = 60

tags = {
Environment = var.environment
Application = "expert-fabric"
}
}

# ElastiCache Redis
resource "aws_elasticache_replication_group" "main" {
replication_group_id = "expert-fabric-${var.environment}"
description = "Expert Fabric Redis cluster"

num_cache_clusters = 3
node_type = "cache.r5.large"
port = 6379
parameter_group_name = "default.redis7"

subnet_group_name = aws_elasticache_subnet_group.main.name
security_group_ids = [aws_security_group.redis.id]

at_rest_encryption_enabled = true
transit_encryption_enabled = true

tags = {
Environment = var.environment
Application = "expert-fabric"
}
}

CI/CD Pipeline

GitHub Actions Workflow

name: Deploy Expert Fabric

on:
push:
branches: [main, develop]
pull_request:
branches: [main]

env:
REGISTRY: ghcr.io
IMAGE_NAME: expertfabric

jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4

- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: '18'
cache: 'npm'

- name: Install dependencies
run: npm ci

- name: Run tests
run: npm test

- name: Run integration tests
run: npm run test:integration
env:
DATABASE_URL: postgresql://test:test@localhost:5432/test
REDIS_URL: redis://localhost:6379

- name: Security scan
run: npm audit --audit-level high

build:
needs: test
runs-on: ubuntu-latest
outputs:
image-tag: ${{ steps.meta.outputs.tags }}
image-digest: ${{ steps.build.outputs.digest }}

steps:
- uses: actions/checkout@v4

- name: Setup Docker Buildx
uses: docker/setup-buildx-action@v3

- name: Login to Container Registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}

- name: Extract metadata
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}

- name: Build and push
id: build
uses: docker/build-push-action@v5
with:
context: .
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max

deploy:
needs: build
runs-on: ubuntu-latest
if: github.ref == 'refs/heads/main'

steps:
- uses: actions/checkout@v4

- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v4
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: us-west-2

- name: Update kubeconfig
run: aws eks update-kubeconfig --name expert-fabric-prod

- name: Deploy to Kubernetes
run: |
kubectl set image deployment/task-orchestrator \
orchestrator=${{ needs.build.outputs.image-tag }} \
-n expert-fabric

kubectl rollout status deployment/task-orchestrator -n expert-fabric

Monitoring & Observability

Prometheus Configuration

# Prometheus scrape config
global:
scrape_interval: 15s
evaluation_interval: 15s

rule_files:
- "expert_fabric_rules.yml"

scrape_configs:
- job_name: 'expert-fabric-services'
kubernetes_sd_configs:
- role: pod
namespaces:
names:
- expert-fabric
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)

alerting:
alertmanagers:
- static_configs:
- targets:
- alertmanager:9093

# Alert rules
groups:
- name: expert-fabric
rules:
- alert: HighErrorRate
expr: rate(http_requests_total{status=~"5.."}[5m]) > 0.1
for: 5m
labels:
severity: critical
annotations:
summary: "High error rate detected"
description: "Error rate is {{ $value }} errors per second"

- alert: TaskProcessingBacklog
expr: task_queue_length > 100
for: 10m
labels:
severity: warning
annotations:
summary: "Task processing backlog"
description: "{{ $value }} tasks waiting in queue"

Application Metrics

import { register, Counter, Histogram, Gauge } from 'prom-client';

// Task metrics
export const taskCounter = new Counter({
name: 'tasks_total',
help: 'Total number of tasks processed',
labelNames: ['status', 'type', 'organization']
});

export const taskDuration = new Histogram({
name: 'task_duration_seconds',
help: 'Task processing duration',
labelNames: ['type', 'expert_type'],
buckets: [0.1, 0.5, 1, 5, 10, 30, 60, 300, 600]
});

export const activeExperts = new Gauge({
name: 'active_experts_total',
help: 'Number of active expert nodes',
labelNames: ['type', 'specialization']
});

// Expert node metrics
export const expertUtilization = new Gauge({
name: 'expert_utilization_ratio',
help: 'Expert node utilization ratio',
labelNames: ['expert_id', 'type']
});

export const expertQuality = new Gauge({
name: 'expert_quality_score',
help: 'Expert node quality score',
labelNames: ['expert_id', 'specialization']
});

// System metrics
export const databaseConnections = new Gauge({
name: 'database_connections_active',
help: 'Active database connections'
});

export const redisOperations = new Counter({
name: 'redis_operations_total',
help: 'Total Redis operations',
labelNames: ['operation', 'status']
});

Security Implementation

Authentication Service

import jwt from 'jsonwebtoken';
import bcrypt from 'bcrypt';
import { RateLimiter } from 'limiter';

class AuthenticationService {
private rateLimiter = new RateLimiter(5, 'minute'); // 5 attempts per minute

async authenticate(email: string, password: string): Promise<AuthResult> {
// Rate limiting
if (!this.rateLimiter.tryRemoveTokens(1)) {
throw new Error('Rate limit exceeded');
}

// Get user from database
const user = await this.getUserByEmail(email);
if (!user) {
throw new Error('Invalid credentials');
}

// Verify password
const isValid = await bcrypt.compare(password, user.passwordHash);
if (!isValid) {
await this.logFailedAttempt(email);
throw new Error('Invalid credentials');
}

// Generate tokens
const accessToken = this.generateAccessToken(user);
const refreshToken = this.generateRefreshToken(user);

return {
accessToken,
refreshToken,
user: this.sanitizeUser(user)
};
}

private generateAccessToken(user: User): string {
return jwt.sign(
{
userId: user.id,
orgId: user.organizationId,
role: user.role
},
process.env.JWT_SECRET!,
{ expiresIn: '15m' }
);
}

async validateToken(token: string): Promise<TokenPayload> {
try {
return jwt.verify(token, process.env.JWT_SECRET!) as TokenPayload;
} catch (error) {
throw new Error('Invalid token');
}
}
}

This implementation provides a solid foundation for Expert Fabric's technical infrastructure, enabling reliable operation from MVP through to enterprise scale while maintaining security, performance, and observability standards.